2,962 research outputs found

    New Results on the Hadronic Contributions to alpha(M_Z) and to (g-2)_mu

    Full text link
    We reevaluate the dispersion integrals of the leading order hadronic contributions to the running of the QED fine structure constant alpha(s) at s=M_Z^2, and to the anomalous magnetic moments of the muon and the electron. Finite-energy QCD sum rule techniques complete the data from e+e- annihilation and tau decays at low energy and at the cc-bar threshold. Global quark-hadron duality is assumed in order to resolve the integrals using the Operator Product Expansion wherever it is applicable. We obtain delta_alpha_had(M_Z) = (276.3 +/- 1.6)x10^{-4} yielding alpha^{-1}(M_Z) = 128.933 +/- 0.021, and a_mu^had = (692.4 +/- 6.2)x10^{-10} with which we find for the complete Standard Model prediction a_mu^SM = (11659159.6 +/- 6.7)x10^{-10}. For the electron, the hadronic contribution reads a_e^had = (187.5 +/- 1.8)x10^{-14}.Comment: 16 pages, 3 figure

    Updated Estimate of the Muon Magnetic Moment Using Revised Results from e+e- Annihilation

    Full text link
    A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy e+e- annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement between e+e- and tau spectral functions in the pi pi channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and 1.0 GeV, so that we refrain from averaging the two data sets. The values found for the lowest-order hadronic vacuum polarization contributions are a_mu[had,LO] = (696.3 +- 6.2[exp] +- 3.6[rad])e-10 (e+e- -based) and a_mu[had,LO] = (711.0 +- 5.0[exp] +- 0.8[rad] +- 2.8[SU2])e-10 (tau-based), where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The corresponding Standard Model predictions for the muon magnetic anomaly read a_mu = (11,659,180.9 +- 7.2[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (e+e- -based) and a_mu = (11,659,195.6 +- 5.8[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (tau-based), where the errors account for the hadronic, light-by-light (LBL) scattering and electroweak contributions. The deviations from the measurement at BNL are found to be (22.1 +- 7.2 +- 3.5 +- 8.0)e-10 (1.9 sigma) and (7.4 +- 5.8 +- 3.5 +- 8.0)e-10 (0.7 sigma) for the e+e- and tau-based estimates, respectively, where the second error is from the LBL contribution and the third one from the BNL measurement.Comment: 14 pages, 7 figures (to be submitted to Phys Lett B

    A New Approach to a Global Fit of the CKM Matrix

    Full text link
    We report on a global CKM matrix analysis taking into account most recent experimental and theoretical results. The statistical framework (Rfit) developed in this paper advocates formal frequentist statistics. Other approaches, such as Bayesian statistics or the 95% CL scan method are also discussed. We emphasize the distinction of a model testing and a model dependent, metrological phase in which the various parameters of the theory are determined. Measurements and theoretical parameters entering the global fit are thoroughly discussed, in particular with respect to their theoretical uncertainties. Graphical results for confidence levels are drawn in various one and two-dimensional parameter spaces. Numerical results are provided for all relevant CKM parameterizations, the CKM elements and theoretical input parameters. Predictions for branching ratios of rare K and B meson decays are obtained. A simple, predictive SUSY extension of the Standard Model is discussed.Comment: 66 pages, added figures, corrected typos, no quantitative change

    Two-dimensional oscillating airfoil test apparatus

    Get PDF
    A two dimensional oscillating airfoil test apparatus is presented as a method of measuring unsteady aerodynamic forces on an airfoil or rotor blade section. The oscillating airfoil test rig, which is being built for use in an 11 X 11-foot transonic wind tunnel (speed range M = 0.4 - 1.4), will allow determination of unsteady loadings and detailed pressure distributions on representative airfoil sections undergoing simulated pitching and flapping motions. The design details of the motion generating system and supporting structure are presented. This apparatus is now in the construction phase

    Strange Quark Mass from the Invariant Mass Distribution of Cabibbo-Suppressed Tau Decays

    Get PDF
    Quark mass corrections to the tau hadronic width play a significant role only for the strange quark, hence providing a method for determining its mass. The experimental input is the vector plus axial-vector strange spectral function derived from a complete study of tau decays into strange hadronic final states performed by ALEPH. New results on strange decay modes from other experiments are also incorporated. The present analysis determines the strange quark mass at the Mtau mass scale using moments of the spectral function. Justified theoretical constraints are applied to the nonperturbative components and careful attention is paid to the treatment of the perturbative expansions of the moments which exhibit convergence problems. The result obtained, m_s(Mtau^2) = (120 +- 11_exp +- 8_Vus +- 19_th) MeV = (120^+21_-26) MeV, is stable over the scale from Mtau down to about 1.4 GeV. Evolving this result to customary scales yields m_s(1 GeV^2) = (160^+28_-35) MeV and m_s(4 GeV^2) = (116^+20_-25) MeV.Comment: LaTex, 8 pages, 4 figures (EPS

    Bayesian Statistics at Work: the Troublesome Extraction of the CKM Phase alpha

    Get PDF
    In Bayesian statistics, one's prior beliefs about underlying model parameters are revised with the information content of observed data from which, using Bayes' rule, a posterior belief is obtained. A non-trivial example taken from the isospin analysis of B-->PP (P = pi or rho) decays in heavy-flavor physics is chosen to illustrate the effect of the naive "objective" choice of flat priors in a multi-dimensional parameter space in presence of mirror solutions. It is demonstrated that the posterior distribution for the parameter of interest, the phase alpha, strongly depends on the choice of the parameterization in which the priors are uniform, and on the validity range in which the (un-normalizable) priors are truncated. We prove that the most probable values found by the Bayesian treatment do not coincide with the explicit analytical solution, in contrast to the frequentist approach. It is also shown in the appendix that the alpha-->0 limit cannot be consistently treated in the Bayesian paradigm, because the latter violates the physical symmetries of the problem.Comment: 17 pages, 10 figure

    Vibrational relaxation measurements in CO2 USING an induced fluorescence technique

    Get PDF
    Vibrational relaxation measurements in carbon dioxide using induced infrared fluorescence techniqu

    Improved Determination of the Hadronic Contribution to the Muon (g-2) and to alpha(M_Z**2) Using new Data from Hadronic Tau Decays

    Full text link
    We have reevaluated the hadronic contribution to the anomalous magnetic moment of the muon (g-2) and to the running of the QED fine structure constant alpha(s) at s=M_Z**2. We incorporated new data from hadronic tau decays, recently published by the ALEPH Collaboration. In addition, compared to previous analyses, we use more extensive e+e- annihilation data sets. The integration over the total hadronic cross section is performed using experimental data up to 40 GeV and results from perturbative QCD above 40 GeV. The improvement from tau data concerns mainly the pion form factor, where the uncertainty in the corresponding integral could be reduced by more than a factor of two. We obtain for the lowest order hadronic vacuum polarization graph a_mu(had) = (695.0 +/- 15.0) x 10^{-10} and delta(alpha(M_Z**2))(had) = (280.9 +/- 6.3) x 10^{-4} using e+e- data only. The corresponding results for combined e+e- and tau data are a_mu(had) = (701.1 +/- 9.4) x 10^{-10} and delta(alpha(M_Z**2))(had) = (281.7 +/- 6.2) x 10^{-4}, where the latter is calculated using the contribution from the five lightest quarks.Comment: 23 pages, LaTex, 6 figures, Paper submitted to Zeitschrift fuer Physik

    Consistent two--dimensional chiral gravity

    Get PDF
    We study chiral induced gravity in the light-cone gauge and show that the theory is consistent for a particular choice of chiralities. The corresponding Kac--Moody central charge has no forbidden region of complex values. Generalized analysis of the critical exponents is given and their relation to the SL(2,R)SL(2,R) vacuum states is elucidated. All the parameters containing information about the theory can be traced back to the characteristics of the group of residual symmetry in the light--cone gauge.Comment: 38 pages, LateX, to appear in Int.J.Mod.Phys.

    A Multivariate Training Technique with Event Reweighting

    Get PDF
    An event reweighting technique incorporated in multivariate training algorithm has been developed and tested using the Artificial Neural Networks (ANN) and Boosted Decision Trees (BDT). The event reweighting training are compared to that of the conventional equal event weighting based on the ANN and the BDT performance. The comparison is performed in the context of the physics analysis of the ATLAS experiment at the Large Hadron Collider (LHC), which will explore the fundamental nature of matter and the basic forces that shape our universe. We demonstrate that the event reweighting technique provides an unbiased method of multivariate training for event pattern recognition.Comment: 20 pages, 8 figure
    • …
    corecore